

Rev. V2

Features

- Available in JAN, JANTX, JANTXV per MIL-PRF-19500/369
- TO-66 Package
- Designed for General Purpose Switching and Amplifier Applications

Electrical Characteristics (T_A = +25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Units	Min.	Max.	
Collector - Emitter Breakdown Voltage	I_C = 100 mA dc I_C = 100 mA dc, R_{BE} = 100 Ω V_{BE} = -1.5 V dc, I_C = 100 mA dc	$\begin{matrix} V_{(BR)CEO} \\ V_{(BR)CER} \\ V_{(BR)CEX} \end{matrix}$	V dc	140 150 160	_	
Collector - Emitter Cutoff Current	$V_{BE} = -1.5 \text{ V dc}, V_{CE} = 140 \text{ V dc}$	I _{CEX1}	μA dc	_	20	
Emitter - Base Cutoff Current	V _{EB} = 7.0 V dc	I _{EBO}	mA dc		1	
Forward Current Transfer Ratio	$V_{CE} = 4.0 \text{ V dc}, I_{C} = 50 \text{ mA dc}$ $V_{CE} = 4.0 \text{ V dc}, I_{C} = 0.5 \text{ A dc}$ $V_{CE} = 4.0 \text{ V dc}, I_{C} = 1.0 \text{ A dc}$	h _{FE}	-	50 25 10	100 —	
Collector - Emitter Saturation Voltage	$I_{\rm C}$ = 0.5 A dc, $I_{\rm B}$ = 50 mA dc	V _{CE(SAT)}	V dc	_	1	
Emitter - Base Voltage (non-saturated)	$I_C = 0.5 \text{ A dc}, V_{CE} = 4.0 \text{ V dc}$	V _{BE}	V dc	_	1.7	
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio	V_{CE} = 4.0 Vdc, I_{C} = 0.5 A dc, f = 100 kHz	h _{fe}		4	40	
Open Circuit Output Capacitance	V _{CB} = 10 Vdc, I _E = 0, 100 kHz ≤ f ≤ 1 MHz	C _{obo}	pF	_	300	
Small-Signal Short-Circuit Forward-Current Transfer Ratio	$V_{CE} = 4 \text{ V dc}, I_{C} = 0.5 \text{ A dc}, f = 1.0 \text{ kHz}$	h _{fe}		15	100	
Collector - Emitter Cutoff Current	$T_A = +150^{\circ}C$ $V_{BE} = -1.5 \text{ V dc}, V_{CE} = 140 \text{ V dc}$	I _{CEX2}	mA dc	_	5	
Forward Current Transfer Ratio	$T_A = -65^{\circ}C$ $V_{CE} = 4 \text{ V dc}, I_C = 0.5 \text{ A dc}$	h _{FE4}	-	15		

Rev. V2

Absolute Maximum Ratings (T_c = +25°C unless otherwise noted)

Ratings	Symbol	Value
Collector - Emitter Voltage	V _{CEO}	140 V dc
Collector - Emitter Voltage	V_{CER}	150 V dc
Collector - Base Voltage	V _{CBO}	160 V dc
Emitter - Base Voltage	V _{EBO}	7.0 V dc
Base Current	I _B	2.0 A dc
Collector Current	Ic	3.0 A dc
Total Power Dissipation @ T _A = +25°C ¹	P _T	3.0 W
Total Power Dissipation @ T _C = +25°C ¹	P _T	25 W
Operating & Storage Temperature Range	T _J , T _{STG}	-65°C to +200°C

Thermal Characteristics

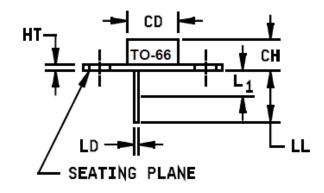
Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Case ²	$R_{ heta JC}$	3°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	58.5°C/W

^{1.} For derating see figures 2 and 3 of MIL-PRF-19500/369.

^{2.} For thermal impedance see figure 4 of MIL-PRF-19500/369.

Switching Characteristics						
Turn-On Time	V_{CC} = 30 Vdc, I_{C} = 0.5 A dc, I_{B} = 50 mA dc	t_{on}	μs	_	8	
Turn-Off Time	$V_{CC} = 30 \text{ Vdc}, I_C = 0.5 \text{ A dc}, I_{B1} = -I_{B2} = 50$ mA dc	t _{off}	μs	_	15	

Safe Operating Area


DC Tests: $T_C = +25$ °C, I Cycle, t = 1.0 s

Test 1: $I_C = 3 \text{ A dc}, V_{CE} = 8.33 \text{ V dc}$ Test 2: $I_C = 833 \text{ mA dc}, V_{CE} = 30 \text{ V dc},$ Test 3: $I_C = 178.5 \text{ mA dc}, V_{CE} = 140 \text{ V dc}$

Rev. V2

Outline Drawing (TO-66)

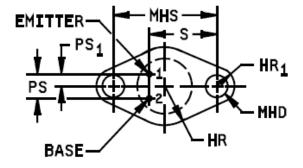


FIGURE 1. Physical dimensions (similar to TO-66).

Rev. V2

Outline Drawing (TO-66)

Ltr	Inches		Millimeters		Notes	
	Min	Max	Min	Max		
CD	.470	.500	11.94	12.70		
СН	.250	.340	6.35	8.64		
HR		.350		8.89		
HR ₁	.115	.145	2.92	3.68		
НТ	.050	.075	1.27	1.91		
LD	.028	.034	0.71	0.86	4, 6	
LL	.360	.500	9.14	12.70		
L ₁		.050		1.27	6	
MHD	.142	.152	3.61	3.86	4	
MHS	.958	.962	24.33	24.43		
PS	.190	.210	4.83	5.33	3	
PS ₁	.093	.107	2.36	2.72	3	
s	.570	.590	14.48	14.99		

NOTES:

- Dimensions are in inches.
- Millimeters are given for general information only.

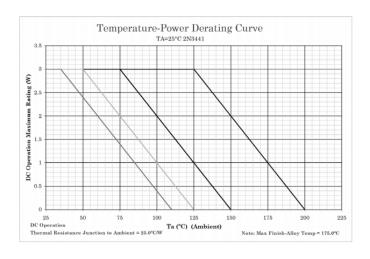
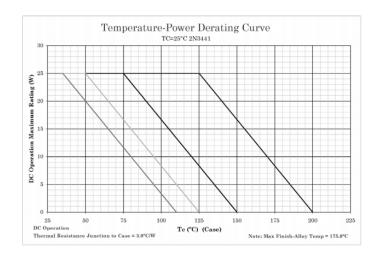

 These dimensions should be measured at points .050 inch (1.27 mm) +.005 inch (0.13 mm) 0 inch below seating plane. When gauge is not used, measurement will be made at the seating plane.
- The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch (0.10 mm) convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.
- Lead diameter shall not exceed twice LD within L1.
- In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.
- Pin 1 is the emitter and pin 2 is the base. The collector shall be electrically connected to the case.

FIGURE 1. Physical dimensions - Continued.

Rev. V2

Temperature-Power Derating Curves


NOTES:

- All devices are capable of operating at ≤ T_J specified on this curve. Any parallel line to this curve will
 intersect the appropriate power for the desired maximum T_J allowed.
- 2. Derate design curve constrained by the maximum junction temperature ($T_J \le +200^{\circ}C$) and power rating
- specified. (See 1.3 herein.)

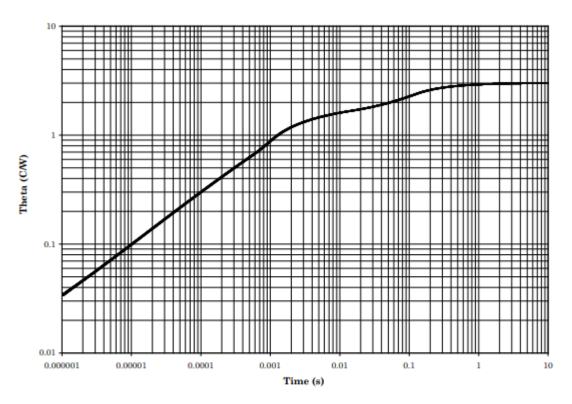
 3. Derate design curve chosen at $T_J \le +150^{\circ}\text{C}$ where the maximum temperature of electrical test is performed.

 4. Derate design curves chosen at $T_J \le +125^{\circ}\text{C}$ and $+110^{\circ}\text{C}$ to show power rating where most users want to limit T_J in their application.

FIGURE 2. Temperature-power derating for 2N3441, R_{0JA} = 25°C/W (TO-66).

NOTES:

- 1. All devices are capable of operating at \leq T $_J$ specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T₁ allowed.
- 2. Derate design curve constrained by the maximum junction temperature ($T_J \le \pm 200^{\circ}C$) and power rating specified, (See 1.3 herein.)
- 3. Derate design curve chosen at $T_J \le +150^{\circ} C$ where the maximum temperature of electrical test is performed.
- Derate design curves chosen at $T_J \le +125^{\circ}C$ and $+110^{\circ}C$ to show power rating where most users want to


FIGURE 3. Temperature-power derating for 2N3441, R_{0JC} = 3°C/W (TO-66).

Rev. V2

Thermal Impedance Curve

Maximum Thermal Impedance

 T_C = +25°C, thermal resistance $R_{\theta JC}$ = 3°C/W at T_C +25°C.

FIGURE 4. Thermal impedance graph for 2N3441, (TO-66).

Rev. V2

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.