

Rev. V4

Features

- Available in JAN, JANTX, JANTXV, JANS and JANSR per MIL-PRF-19500/441
- · Radiation Tolerant Levels M, D, P, L and R
- TO-66 Package
- Designed for Power Amplifier and Medium Speed Switching Applications

Electrical Characteristics (T_A = +25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.				
Off Characteristics									
Collector - Emitter Breakdown Voltage	I_C = -100 mA dc, 2N3740 I_C = -100 mA dc, 2N3741	$V_{(BR)CEO}$	V dc	-60 -80	_				
Collector - Emitter Cutoff Current	V_{CE} = -40 V dc, 2N3740 V_{CE} = -60 V dc, 2N3741	I _{CEO}	μA dc	_	-10				
Collector - Emitter Cutoff Current	V _{CE} = -60 V dc, V _{BE} = 1.5 V dc, 2N3740 V _{CE} = -80 V dc, V _{BE} = 1.5 V dc, 2N3741	I _{CEX}	nA dc	_	-300				
Collector - Base Cutoff Current	V _{CE} = -60 V dc, 2N3740 V _{CE} = -80 V dc, 2N3741	I _{CBO}	nA dc	_	-100				
Emitter - Base Cutoff Current	V _{EB} = -7 V dc	nA dc	_	-100					
On Characteristics ¹		ı							
Forward Current Transfer Ratio	$\begin{split} I_{C} = -100 \text{ mA dc, } V_{CE} = -1 \text{ V dc} \\ I_{C} = -250 \text{ mA dc, } V_{CE} = -1 \text{ V dc} \\ I_{C} = -500 \text{ mA dc, } V_{CE} = -1 \text{ V dc} \\ I_{C} = -1 \text{ A dc, } V_{CE} = -1 \text{ V dc} \\ I_{C} = -4 \text{ A dc, } V_{CE} = -5 \text{ V dc} \end{split}$	h _{FE}	-	40 30 20 10 3	120				
Collector - Emitter Saturation Voltage	I_C = -250 mA dc, I_B = -25 mA dc I_C = -1 A dc, I_B = -125 mA dc	V _{CE(SAT)1}	V dc	_	-0.4 -0.6				
Base - Emitter Voltage	I_C = -250 mA dc, V_{CE} = -1 Vdc	V_{BE}	V dc	_	-1.0				
Dynamic Characteristics									
Small-Signal Short-Circuit Forward Current Transfer Ratio	I_C = -100 mA dc; V_{CE} = -10 V dc; f = 5 MHz	/ dc; f = 5 h _{FE}			12				
Small-Signal Short-Circuit Forward Current Transfer Ratio	$I_C = -50 \text{ mA dc}$; $V_{CE} = -10 \text{ V dc}$; $f = 1 \text{ kHz}$	h _{FE}	-	25	250				
Output Capacitance	$V_{CB} = -10 \text{ V dc}; I_E = 0; 100 \text{ kHz} \le f \le 1$ MHz	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Switching Characteristics									
Turn-On Time	$I_C = -1 \text{ A dc};$ $I_{B1} = -0.1 \text{ A dc}$	t _{on}	ns	_	400				
Turn-Off Time	$I_C = -1 \text{ A dc};$ $I_{B1} = I_{B2} = -0.1 \text{ A dc}$	t _{off}	μs	_	1				

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

2N3740 & 2N3741

PNP Power Silicon Transistor

Rev. V4

Electrical Characteristics (T_A = +25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Emitter Cutoff Current	T _A = +150°C V _{CE} = -60 V dc, 2N3740 V _{CE} = -80 V dc, 2N3741	I _{CEX2}	μA dc	_	-25
Forward Current Transfer Ratio	$T_A = -55^{\circ}C$ $V_{CE} = -1 \text{ V dc}; I_C = -250 \text{ mA dc}$	h _{FE6}		10	_

Safe Operating Area

DC Tests: T_C = +25°C, I Cycle, t = 1.0 s

Test 1: V_{CE} = -6.25 V dc, I_{C} = -4.0 A dc V_{CE} = -20 Vdc, I_{C} = -1.25 A dc Test 2:

 V_{CE} = -50 Vdc, I_{C} = -150 A dc, 2N3740 V_{CE} = -65 Vdc, I_{C} = -150 A dc, 2N3741 Test 3:

2N3740 & 2N3741

PNP Power Silicon Transistor

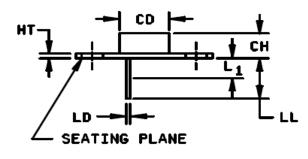
Rev. V4

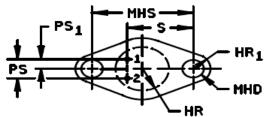
Absolute Maximum Ratings (T_A = +25°C unless otherwise specified)

Ratings	Symbol	Value
Collector - Emitter Voltage 2N3740 2N3741	V _{CEO}	-60 V dc -80 V dc
Collector - Base Voltage 2N3740 2N3741	V _{CBO}	-60 V dc -80 V dc
Emitter - Base Voltage	V _{EBO}	-7 V dc
Base Current	I _B	-2 A dc
Collector Current	I _C	-4 A dc
Total Power Dissipation $T_{C} = +25^{\circ}C$ $T_{A} = +25^{\circ}C$ $T_{C} = +100^{\circ}C$	P _T ⁽¹⁾	25 W 3 W 14 W
Operating & Storage Temperature Range	T _J , T _{STG}	-65°C to +200°C

Thermal Characteristics

Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Case	R _{0JC} (2)	7°C/W

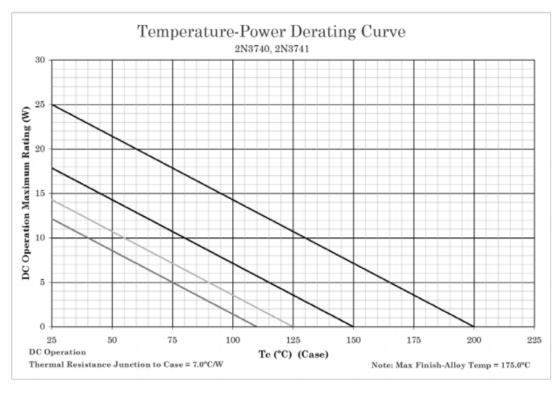

^{1.} Derate linearly @ 0.428 mW / $^{\circ}$ C for T_C >+25 $^{\circ}$ C.


^{2.} See figures 6 and 7 of MIL-PRF-19500/441 for transient thermal impedance graphs.

Rev. V4

Outline Drawing (TO-66)

Dimensions			nsions				Dimensions				
Symbol	Symbol Inc		Millimeter		Notes	Symbol	Inc	hes	Millim	eters	Notes
	Min	Max	Min	Max			Min	Max	Min	Max	
CD		.620		15.75	9	LL	.360	.500	9.14	12.70	4, 8
CH	.250	.340	6.35	8.64		L ₁		.050		1.27	4, 8
HT	.050	.075	1.27	1.91		MHD	.142	.152	3.61	3.86	6, 9
HR		.350		8.89		MHS	.958	.962	24.33	24.43	
HR ₁	.115	.145	2.92	3.68	5	PS	.190	.210	4.83	5.33	3
LD	.028	.034	0.71	0.86	4, 8, 9	PS ₁	.093	.107	2.36	2.72	3
						S	.570	.590	14.48	14.99	3


NOTES:

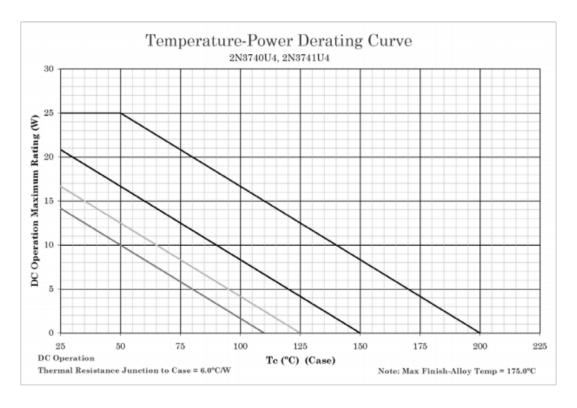
- Dimensions are in inches.
- 2. Millimeters are given for general information only.
- These dimensions should be measured at points .050 to .055 inch (1.27 to 1.40 mm) below seating plane.
 When gauge is not used, measurement will be made at seating plane.
- Both terminals.
- 5. At both ends.
- 6. Two holes.
- The collector shall be electrically connected to the case.
- 8. LD applies between L1 and LL. Lead diameter shall not exceed twice LD within L1.
- In accordance with ASME Y14.5M, diameters are equivalent to φ symbology.
- Lead 1 is the emitter, lead 2 is the base, collector is the case.

FIGURE 1. Physical dimensions, TO-66 (2N3740, 2N3741).

Rev. V4

Temperature-Power Derating Curve

 $R_{\theta JC} = 7^{\circ}C/W$


NOTES:

- All devices are capable of operating at ≤ T_J specified on this curve. Any parallel line to this curve will
 intersect the appropriate power for the desired maximum T_J allowed.
- 2. Derate design curve constrained by the maximum junction temperature ($T_J \le +200^{\circ}C$) and power rating specified. (See 1.3 herein.)
- Derate design curve chosen at T_J ≤ +150°C where the maximum temperature of electrical test is performed.
- 4. Derate design curves chosen at $T_J \le +125^{\circ}C$ and $+110^{\circ}C$ to show power rating where most users want to limit T_J in their application.

FIGURE 4. Temperature-power derating graph (2N3740, 2N3741, TO-66).

Rev. V4

Temperature-Power Derating Curve

R₀JC = 6°C/W

NOTES:

- All devices are capable of operating at ≤ T_J specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T_J allowed.
- Derate design curve constrained by the maximum junction temperature (T_J ≤ +200°C) and power rating specified. (See 1.3 herein.)
- Derate design curve chosen at T_J ≤ +150°C where the maximum temperature of electrical test is performed.
- 4. Derate design curves chosen at $T_J \le +125^{\circ}C$ and $+110^{\circ}C$ to show power rating where most users want to limit T_J in their application.

FIGURE 5. Temperature-power derating graph (2N3740U4, 2N3741U4).

Rev. V4

Thermal Impedance Curves

Maximum Thermal Impedance

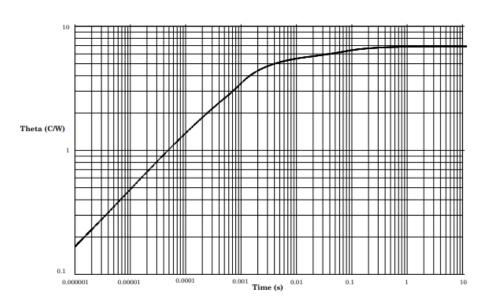


FIGURE 6. Transient thermal impedance graph (2N3740 and 2N3741).

Maximum Thermal Impedance

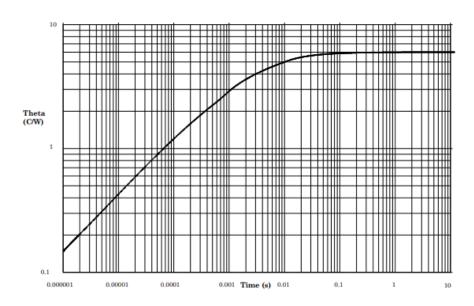


FIGURE 7. Transient thermal impedance graph (2N3740U4 and 2N3741U4).

2N3740 & 2N3741

PNP Power Silicon Transistor

Rev. V4

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.